在直角坐标系中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求和
的直角坐标方程;
(2)已知直线与
轴交于点
,且与曲线
交于
,
两点(
在第一象限),则
的值.
已知函数的图像在点
处的切线方程为
.
(1)求的表达式;
(2)当时,
恒成立,求
的取值范围.
已知椭圆过点
.
(1)求椭圆的方程,并求其离心率;
(2)过点作
轴的垂线
,设点
为第四象限内一点且在椭圆
上(点
不在直线
上),点
关于
的对称点为
,直线
与
交于另一点
.设
为原点,判断直线
与直线
的位置关系,并说明理由.
某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
| 锻炼不达标 | 锻炼达标 | 合计 |
男 |
|
|
|
女 |
| 20 | 110 |
合计 |
|
|
|
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出5人,进行体育锻炼体会交流,再从这5人中选出2人作重点发言,求作重点发言的2人中,至少1人是女生的概率.
参考公式:,其中
.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
如图,四棱锥中,
,
,
,
,
.
(1)求证:平面平面
;
(2)求点到平面
的距离.
已知等差数列中,
,
,
,
顺次成等比数列.
(1)求数列的通项公式;
(2)记,
的前
项和
,求
.