已知椭圆的离心率
,左、右焦点分别为
、
,抛物线
的焦点
恰好是该椭圆的一个顶点.
(1)求椭圆的方程;
(2)已知圆的切线
(直线
的斜率存在且不为零)与椭圆相交于
、
两点,那么以
为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.
四川省阆中中学某部根据运动场地的影响,但为尽大可能让学生都参与到运动会中来,在2018春季运动会中设置了五个项目,其中属于跑步类的两项,分别是200米和400米,另外三项分别为跳绳、跳远、跳高学校要求每位学生必须参加,且只参加其中一项,学校780名同学参加各运动项目人数统计如下条形图:
其中参加跑步类的人数所占频率为,为了了解学生身体健康与参加运动项目之间的关系,用分层抽样的方法从这780名学生中抽取13人进行分析.
1
求条形图中m和n的值以及抽取的13人中参加200米的学生人数;
2
现从抽取的参加400米和跳绳两个项目中随机抽取4人,记其中参加400米跑的学生人数为X,求离散型随机变量X的分布列与数学期望.
已知四棱锥,底面
为菱形,
,
为
上的点,过
的平面分别交
,
于点
,
,且
平面
.
(1)证明:;
(2)当为
的中点,
,
与平面
所成的角为
,求
与平面
所成角的正弦值.
已知向量满足
,函数
.
(1)求函数的单调区间;
(2)在中,角A、B、C所对的边分别为a、b、c,且
,求
.
已知,若
,且方程
有5个不同根,则
的取值范围为________
已知,cos(α-β)=
,sin(α+β)=
,那么sin2α= .