在平面直角坐标系中,过点
作倾斜角为
的直线
,以原点
为极点,
轴非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
,将曲线
上各点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线
,直线
与曲线
交于不同的两点
.
(1)求直线的参数方程和曲线
的普通方程;
(2)求的值.
已知函数.
(1)设实数(
为自然对数的底数),求函数
在
上的最小值;
(2)若为正整数,且
对任意
恒成立,求
的最大值.
已知动圆过定点
,且与直线
相切,椭圆
的对称轴为坐标轴,
点为坐标原点,
是其一个焦点,又点
在椭圆
上.
(1)求动圆圆心的轨迹
的标准方程和椭圆
的标准方程;
(2)若过的动直线
交椭圆
于
点,交轨迹
于
两点,设
为
的面积,
为
的面积,令
的面积,令
,试求
的取值范围.
2019年7月,超强台风登陆某地区.据统计,本次台风造成该地区直接经济损失119.52亿元.经过调查住在该地某小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:
(1)根据频率分布直方图估计小区平均每户居民的平均损失;
(2)台风后区委会号召小区居民为台风重灾区捐款,经过调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(3)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由王师傅和张师傅两人进行维修,王师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求王师傅比张师傅早到小区的概率.
附:临界值表
参考公式:,
.
如图,正三棱柱的底面边长为1,点
是
的中点,
是以
为直角顶点的等腰直角三角形.
(1)求点 到平面
的距离;
(2)求二面角的大小.
设的内角
的对边分别为
,且
(1)求角的大小;
(2)若,
,求
的面积.