[选修4—5:不等式选讲]
已知函数,其中
.
(1)当时,求不等式
的解集;
(2)若存在,使得
,求实数
的取值范围.
在平面直角坐标系xOy中,已知曲线C1:, 曲线C2:
,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系. 并在两种坐标系中取相同的单位长度。
(1)写出曲线C1,C2的极坐标方程;
(2)在极坐标系中,已知点A是射线l:与C1的交点,点B是l与C2的异于极点的交点,当
在区间
上变化时,求
的最大值.
设函数.
(1)当(
为自然对数的底数)时,求
的最小值;
(2)讨论函数零点的个数;
(3)若对任意恒成立,求
的取值范围.
如图,已知抛物线,过点
任作一直线与
相交于
两点,过点
作
轴的平行线与直线
相交于点
(
为坐标原点).
(1)证明:动点在定直线上;
(2)作的任意一条切线
(不含
轴)与直线
相交于点
,与(1)中的定直线相交于点
,证明:
为定值,并求此定值.
某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为“成绩优秀”.
(1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面2x2列联表,并判断是否有的把握认为“成绩优秀”与教学方式有关.
| 甲班(A方式) | 乙班(B方式) | 总计 |
成绩优秀 |
|
|
|
成绩不优秀 |
|
|
|
总计 |
|
|
|
附:
P( | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
已知多面体的底面
是边长为
的菱形,
底面
,
,且
.
(1)证明:平面平面
;
(2)若,求三棱锥
的体积.