设集合,
,
.则实数
_______.
已知函数,
是偶函数,则
______.
已知向量,
,若
,则实数
_________.
函数的定义域是___________.
对于曲线,若存在非负实数
和
,使得曲线
上任意一点
,
恒成立(其中
为坐标原点),则称曲线
为有界曲线,且称
的最小值
为曲线
的外确界,
的最大值
为曲线
的内确界.
(1)写出曲线的外确界
与内确界
;
(2)曲线与曲线
是否为有界曲线?若是,求出其外确界与内确界;若不是,请说明理由;
(3)已知曲线上任意一点
到定点
的距离之积为常数
,求曲线
的外确界与内确界.
已知椭圆的两焦点分别为
,
,
是椭圆在第一象限内的一点,并满足
,过
作倾斜角互补的两直线
、
分别交椭圆于
、
两点.
(1)求点坐标;
(2)当直线经过点
时,求直线
的方程;
(3)求证直线的斜率为定值.