如图,在四棱锥中,平面
平面ABCD,底面ABCD是直角梯形,
,
,
,O是AD的中点.
(1)在线段PA上找一点E,使得平面PCD,并证明;
(2)在(1)的条件下,若,求平面OBE与平面POC所成的锐二面角的余弦值.
在中,角A,B,C的对边分别为a,b,c,B为锐角且满足
.
(1)求角B的大小;
(2)若,
,求
的面积.
在各项均为正数的数列中,
,
,
是数列
的前n项和,若对
,不等式
恒成立,则实数
的取值范围为________.
如图,在棱长为2的正方体中,M,N,P分别为棱
,
,CD的中点,则平面MNP与正方形
相交形成的线段的长度为________.
若x,y满足约束条件,则
的最大值为________.
已知向量,
,
,则
________.