(本小题满分12分)
已知数列的前
项和
,且
.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,是否存在
,使得
、
、
成等比数列.若存在,求出所有符合条件的
值;若不存在,请说明理由.
在中,
,则
.
设为抛物线
上一点,
为抛物线
的焦点,以
为圆心、
为半径的圆和抛物线
的准线相交,则
的取值范围是 。
“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是__________.
已知平面向量与
的夹角为
,且
,
,则
__________.
已知函数的值域是
,则实数
的取值范围是( )
A. B.
C.
D.