已知函数的最小值为
.
(1)求的值;
(2)设实数满足
,证明:
.
在平面直角坐标系中,以
为极点,
轴的正半轴为极轴,建立极坐标系.曲线
的极坐标方程为
,曲线
的参数方程为
(
为参数),
.
(Ⅰ)求曲线的直角坐标方程,并判断该曲线是什么曲线?
(Ⅱ)设曲线与曲线
的交点为
,
,
,当
时,求
的值.
已知函数 (其中
为常数且
)在
处取得极值.
(1)当时,求
的极大值点和极小值点;
(2)若在
上的最大值为1,求
的值.
已知椭圆,
,
为椭圆的两个焦点,
为椭圆上任意一点,且,
构成等差数列,过椭圆焦点垂直于长轴的弦长为3.
(1)求椭圆的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆恒有两个交点,且,求出该圆的方程.
如图,在四棱椎中,
,
平面
,
平面
,
,
,
.
(1)求证:平面平面
;(2)在线段
上是否存在一点
,使
平面
?若存在,求出
的值;若不存在,说明理由.
【2018届河南省南阳市第一中学高三上学期第八次考试】某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于60分到140分之间(满分150分),将统计结果按如下方式分成八组:第一组[60,70),第二组[70,80),……,第八组:[130,140],如图是按上述分组方法得到的频率分布直方图的一部分.
(1)求第七组的频率,并完成频率分布直方图;
(2)估计该校的2000名学生这次考试成绩的平均分(可用中值代替各组数据平均值);
(3)若从样本成绩属于第一组和第六组的所有学生中随机抽取2名,求他们的分差小于10分的概率.