满分5 > 高中数学试题 >

在平面直角坐标系中,以为极点, 轴的正半轴为极轴,建立极坐标系.曲线的极坐标方程...

在平面直角坐标系中,以为极点, 轴的正半轴为极轴,建立极坐标系.曲线的极坐标方程为,曲线的参数方程为为参数),.

(Ⅰ)求曲线的直角坐标方程,并判断该曲线是什么曲线?

(Ⅱ)设曲线与曲线的交点为 ,当时,求的值.

 

(1)曲线为椭圆;(2). 【解析】【试题分析】(1)运用直角坐标与极坐标之间的互化关系求解;(2)依据题设借助直线参数方程的几何意义分析求【解析】 (1) 由 得,该曲线为椭圆. (2)将代入得 ,由直线参数方程的几何意义,设, , , , 所以 ,从而 ,由于,所以 .  
复制答案
考点分析:
相关试题推荐

已知 (,且为常数).

(1)求的单调区间;

(2)若在区间内,存在时,使不等式成立,求的取值范围.

 

查看答案

已知椭圆C: (a>b>0)经过点(,1),以原点为圆心、椭圆短半轴长为半径的圆经过椭圆的焦点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设过点(-1,0)的直线l与椭圆C相交于A,B两点,试问在x轴上是否存在一个定点M,使得恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.

 

查看答案

2018届河南省南阳市第一中学高三上学期第八次考试】2017514日至15日,一带一路国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如下图所示.

1)估计甲品牌产品寿命小于200小时的概率;

2)在抽取的这两种品牌产品中,抽取寿命超过300小时的产品3个,设随机变量表示抽取的产品是甲品牌的产品个数,求的分布列和数学期望值.

 

查看答案

如图,在四棱椎中, 是棱上一点,且,底面是边长为2的正方形, 为正三角形,且平面平面,平面与棱交于点.

(1)求证:平面平面

(2)求二面角的余弦值.

 

查看答案

已知的内角的对边分别为 .

(1)若 ,求

(2)若 边上的高为,求.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.