满分5 > 高中数学试题 >

某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50...

某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155 到195之间),现将抽取结果按如下方式分成八组:第一组,第二组,…,第八组,并按此分组绘制如图所示的频率分布直方图,其中第六组和第七组还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.

(1)补全频率分布直方图;

(2)根据频率分布直方图估计这50位男生身高的中位数;

(3)用分层抽样的方法在身高为内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在内的概率.

 

(1)见解析;(2)174.5;(3)。 【解析】试题分析:(1)先分别算出第六组和第七组的人数,进而算出其频率与组距的比,补全直方图;(2)借助加权平均数的计算公式建立方程求解;(3)先借助分层抽样的特征求出第四、第五组的人数,再运用列举法列举出所有可能数及满足题设的条件的数,运用古典概型的计算公式求【解析】 【解析】 (1)第六组与第七组频率的和为: ∵第六组和第七组人数的比为5:2. ∴第六组的频率为0.1,纵坐标为0.02;第七组频率为0.04,纵坐标为0.008. (2)设身高的中位数为,则 ∴估计这50位男生身高的中位数为174.5 (3)由于第4,5组频率之比为2:3,按照分层抽样,故第4组中应抽取2人记为1,2, 第5组应抽取3人记为3,4,5 则所有可能的情况有:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5}, {3,4},{3,5},{4,5}共10种 满足两位男生身高都在[175,180]内的情况有{3,4},{3,5},{4,5}共3种, 因此所求事件的概率为.  
复制答案
考点分析:
相关试题推荐

东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限(单位:年, )和所支出的维护费用(单位:万元)厂家提供的统计资料如下:

(1)请根据以上数据,用最小二乘法原理求出维护费用关于的线性回归方程

(2)若规定当维护费用超过13.1万元时,该批空调必须报废,试根据(1)的结论求该批空调使用年限的最大值.

参考公式:最小二乘估计线性回归方程中系数计算公式:

 

查看答案

已知 是互相垂直的两个单位向量, .

(1)求的夹角;

(2)若,求的值.

 

查看答案

如图,等腰梯形的底边长分别为8和6,高为7,圆为等腰梯形的外接圆,对于平面内两点 ),若圆上存在点,使得,则正实数的取值范围是__________

 

查看答案

已知扇形的周长为10,面积为4,则扇形的中心角等于__________(弧度).

 

查看答案

下图是2016年在巴西举行的奥运会上,七位评委为某体操运动员的单项比赛打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为__________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.