以下茎叶图记录了甲,乙两组各四名同学的植树棵树,乙组记录中有一个数据模糊,无法确认,在图中以X表示。
(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(2)如果X=9,分别从甲,乙两组中随机选取一名同学,求这两名同学的植树总棵树为19的概率.
已知命题p:方程表示焦点在
轴上的双曲线,命题q:f(x)=-(5-2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围
在中,BC边长为24,AC、AB边上的中线长之和等于39.若以BC边中点为原点,BC
边所在直线为x轴建立直角坐标系,则的重心G的轨迹方程为: .
如图,在矩形ABCD中,AB=,BC=1,以A为圆心,1为半径作四分之一个圆弧DE,在圆弧DE上任取一点P,则直线AP与线段BC有公共点的概率是 .
已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为 .
下表是某厂1~4月份用水量(单位:百吨)的一组数据:
月份x | 1 | 2 | 3 | 4 |
用水量y | 4.5 | 4 | 3 | 2.5 |
由其散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是
=-0.7x+
,则
= .