若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是( )
A.2 B.3 C.4 D.5
已知A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=( )
A.{-2,-1} B.{-2} C.{-1,0,1} D.{0,1}
(2013·杭州模拟)已知数列{an}的前n项和Sn=-an-n-1+2(n∈N*),数列{bn}满足bn=2nan.
(1)求证数列{bn}是等差数列,并求数列{an}的通项公式.
(2)设数列的前n项和为Tn,证明:n∈N*且n≥3时,Tn>
.
(3)设数列{cn}满足an(cn-3n)=(-1)n-1λn(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有cn+1>cn.
(2013·天津模拟)已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn,bn+1)(n∈N*)在直线y=x+2上.
(1)求数列{an},{bn}的通项公式.
(2)求数列{an·bn}的前n项和Dn.
(3)设cn=an·sin2-bn·cos2
(n∈N*),求数列{cn}的前2n项和T2n.
(2013·佛山模拟)在平面直角坐标系xOy中,以Ox为始边,角α的终边与单位圆O的交点B在第一象限,已知A(-1,3).
(1)若OA⊥OB,求tan α的值;
(2)若B点横坐标为,求S△AOB.
(2013·安徽高考)设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=x+an+1cos x-an+2sin x满足f′
=0.
(1)求数列{an}的通项公式;
(2)若bn=2,求数列{bn}的前n项和Sn.