用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”的第二步
是( ).
A.假使n=2k+1时正确,再推n=2k+3正确
B.假使n=2k-1时正确,再推n=2k+1正确
C.假使n=k时正确,再推n=k+1正确
D.假使n≤k(k≥1),再推n=k+2时正确(以上k∈N+)
用反证法证明:如果x>,那么x2+2x-1≠0.
已知数列{an}满足a1=λ,an+1=an+n-4,λ∈R,n∈N+,对任意λ
∈R,证明:数列{an}不是等比数列.
已知函数f(x)在[0,1]上有意义,且f(0)=f(1),如果对任意的x1,x2∈[0,1]
且x1≠x2,都有|f(x1)-f(x2)|<|x1-x2|,求证:|f(x1)-f(x2)|<,若用反证法证明该题,则反设应为________.
以下各数不能构成等差数列的是 ( )
A.4,5,6 B.1,4,7
C.,
,
D.
,
,
已知a是整数,a2是偶数,求证:a也是偶数.