登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
[已知数列{an}满足:,a2=1,数列为等差数列;数列{bn}中,Sn为其前n...
[已知数列{a
n
}满足:
,a
2
=1,数列
为等差数列;数列{b
n
}中,S
n
为其前n项和,且
,
.
(1)求证:数列{b
n
}是等比数列;
(2)记A
n
=a
n
a
n+1
,求数列{A
n
}的前n项和S;
(3)设数列{c
n
}满足
,T
n
为数列{c
n
}的前n项和,求x
n
=T
n+1
-2T
n
+T
n-1
的最大值.
(1)根据给出的数列{bn}的前n项和所满足的等式,求出Sn,然后由求出通项,继而可说明数列{bn}是等比数列; (2)由数列为等差数列求出数列{an}的通项公式,然后运用裂项法求数列{An}的前n项和S; (3)把an,bn的通项公式代入求cn,把xn=Tn+1-2Tn+Tn-1变形后换上cn,得到关于n的函数式,写出Xn+1,与Xn作差后分析差式的单调性,从而得到Xn的最大值. 【解析】 (1)由得,,当n≥2时,,又,故,故数列{bn}是等比数列; (2)∵,∴,,∴d==3,∴,则, ∴, ∴; (3)∵ ∴, , 故当n≤7时,{xn}是递减的,当n≥8时,{xn}是递增的,但n≥8时,xn<0 故xn的最大值为.
复制答案
考点分析:
相关试题推荐
已知关于x的不等式(kx-k
2
-4)(x-4)>0,其中k∈R.
(1)当k变化时,试求不等式的解集A;
(2)对于不等式的解集A,若满足A∩Z=B(其中Z为整数集).试探究集合B能否为有限集?若能,求出使得集合B中元素个数最少的k的所有取值,并用列举法表示集合B;若不能,请说明理由.
查看答案
已知向量
,
,函数
,
.
(1)求函数g(x)的最小正周期;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(c)=3,c=1,
,且a>b,求a,b的值.
查看答案
在△ABC中,
,D是BC边上一点(D与B、C不重合),且
=
+
•
,则∠B=
.
查看答案
设A=(a
1
,a
2
,a
3
),B=
,记AϖB=max{a
1
b
1
,a
2
b
2
,a
3
b
3
},(注:max{a
1
,a
2
,…a
n
}表示a
1
,a
2
,…a
n
中最大的数),若A=(x-1,x+1,x),
,且AϖB=x-1,则x的取值范围为
.
查看答案
设奇函数f(x)在[-1,1]上是增函数,f(-1)=-1.若函数f(x)≤t
2
-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.