满分5 > 高中数学试题 >

已直方程在x∈[0,nπ),(n∈N*)内所有根的和记为an (1)写出an的表...

已直方程manfen5.com 满分网在x∈[0,nπ),(n∈N*)内所有根的和记为an
(1)写出an的表达式:(不要求严格的证明)  
(2)求Sn=a1+a2+…+an
(3)设bn=(kn-5)π,若对任何n∈N*都有an≥bn,求实数k的取值范围.
(1)通过方程的解,利用n=1,2,求出a1,a2,类比写出an的表达式.(不要求严格的证明)   (2)利用拆项法直接通过公式法与等差数列求和,求Sn=a1+a2+…+an的值. (3)设bn=(kn-5)π,推出an≥bn的表达式,利用分离变量,通过基本不等式判断函数的单调性,求出函数的最小值,即可求实数k的取值范围. 【解析】 (1)解方程得或(1分) ∴当n=1时,或,此时(2分) 当n=2时,, ∴(3分) 依此类推: ∴(5分) (2) == (9分) (3)由an≥bn得 ∴ ∵n∈N*∴(11分) 设 易证f(n)在上单调递减,在()上单调递增.    (13分) ∵n∈N* ∴n=2,f(n)min=4 ∴k≤4(15分)
复制答案
考点分析:
相关试题推荐
已知数列an的前n项和manfen5.com 满分网
(1)令bn=2nan,求证:数列bn是等差数列,并求数列an的通项公式.
(2)令manfen5.com 满分网,试比较Tnmanfen5.com 满分网的大小,并予以证明.
查看答案
已知椭圆C:manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,短轴一个端点到右焦点的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为manfen5.com 满分网,求△AOB面积的最大值.
查看答案
设数列{an}是有穷等差数列,给出下面数表:
a1  a2    a3     …an-1 an 第1行
a1+a2   a2+a3   …an-1+an  第2行


…第n行
上表共有n行,其中第1行的n个数为a1,a2,a3…an,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为b1,b2,b3…bn
(1)求证:数列b1,b2,b3…bn成等比数列;
(2)若ak=2k-1(k=1,2,…,n),求和manfen5.com 满分网
查看答案
已知椭圆┍的方程为manfen5.com 满分网+manfen5.com 满分网=1(a>b>0),点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网),求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=-manfen5.com 满分网,证明:E为CD的中点;
(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值范围.
查看答案
已知钝角△ABC的三边的长是3个连续的自然数,其中最大角为∠A,则cosA=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.