满分5 > 高中数学试题 >

已知动圆P:(x-a)2+(y-b)2=r2(r>0)被y轴所截的弦长为2,被x...

已知动圆P:(x-a)2+(y-b)2=r2(r>0)被y轴所截的弦长为2,被x轴分成两段弧,且弧长之比等于manfen5.com 满分网(其中P(a,b)为圆心,O为坐标原点).
(1)求a,b所满足的关系式;
(2)点P在直线x-2y=0上的投影为A,求事件“在圆P内随机地投入一点,使这一点恰好在△POA内”的概率的最大值.
(1)利用垂径定理,勾股定理、等腰直角三角形的性质即可得出; (2)利用点到直线的距离公式、两点间的距离公式先计算出三角形的面积,利用几何概率的计算公式得出概率,进而利用导数求得其最大值. 【解析】 (1)如图所示,设圆P被y轴所截的弦为EF,与x轴相较于C,D两点, 过点P作PM⊥EF,垂足为M,连接PE,由垂径定理可得|EM|=1,在Rt△EMP中,r2=1+a2.① ∵被x轴分成两段弧,且弧长之比等于,设为劣弧,∴∠CPD=90°, 过点P作PN⊥x轴,垂足无N,连接PD,PC,则Rt△PND为等腰直角三角形,∴r2=2b2.② 联立①②消去r可得:2b2=1+a2,即为a,b所满足的关系式. (2)点P到直线x-2y=0的距离|PA|==d, ∵PA⊥OA,∴|OA|==, ∴S△OAP==, ∴事件“在圆P内随机地投入一点,使这一点恰好在△POA内”的概率P== =,当且仅当d2=r2-d2,即,解得 ∴P的最大值为.
复制答案
考点分析:
相关试题推荐
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
manfen5.com 满分网
(Ⅰ)证明:AD⊥平面PBC;
(Ⅱ)求三棱锥D-ABC的体积;
(Ⅲ)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
查看答案
已知关于x的一元二次函数f(x)=ax2-bx+1,分别从集合P和Q中随机取一个数a和b得到数列(a,b).
(1)若P={x|1≤x≤3,x∈Z},Q={x|-1≤x≤4,x∈Z},列举出所有的数对(a,b),并求函数y=f(x)有零点的概率;
(2)若P={x|1≤x≤3,x∈R},Q={x|-1≤x≤4,x∈R},求函数y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案
一企业生产的某产品在不做电视广告的前提下,每天销售量为b件.经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量S(件)与电视广告每天的播放量n(次)的关系可用如图所示的程序框图来体现.
(1)试写出该产品每天的销售量S(件)关于电视广告每天的播放量n(次)的函数关系式;
(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加90%,则每天电视广告的播放量至少需多少次?

manfen5.com 满分网 查看答案
某中学为研究学生的身体素质与课外体育锻炼时间的关系,对400名高一学生的一周课外体育锻炼时间进行调查,结果如下表所示
锻炼时间(分钟)[0,20)[20,40)[40,60)[60,80)[80,100)[100,120)
人数4060801008040
(I)完成频率分布直方图,并估计该中学高一学生每周参加课外体育锻炼时间的众数;
(II)现采用分层抽样的方法抽取容量为20的样本,
2中课外体育锻炼时间在[80,120]分钟内的学生应抽取多少人?
②若从①中被抽取的学生中随机抽取2名,求这2名学生课外体育锻炼时间均在[80,100)分钟内的概率.

manfen5.com 满分网 查看答案
如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为manfen5.com 满分网.其中正确的有    (把所有正确的序号都填上).
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.