如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.

(Ⅰ)证明:AD⊥平面PBC;
(Ⅱ)求三棱锥D-ABC的体积;
(Ⅲ)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
考点分析:
相关试题推荐
已知关于x的一元二次函数f(x)=ax
2-bx+1,分别从集合P和Q中随机取一个数a和b得到数列(a,b).
(1)若P={x|1≤x≤3,x∈Z},Q={x|-1≤x≤4,x∈Z},列举出所有的数对(a,b),并求函数y=f(x)有零点的概率;
(2)若P={x|1≤x≤3,x∈R},Q={x|-1≤x≤4,x∈R},求函数y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案
一企业生产的某产品在不做电视广告的前提下,每天销售量为b件.经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量S(件)与电视广告每天的播放量n(次)的关系可用如图所示的程序框图来体现.
(1)试写出该产品每天的销售量S(件)关于电视广告每天的播放量n(次)的函数关系式;
(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加90%,则每天电视广告的播放量至少需多少次?
查看答案
某中学为研究学生的身体素质与课外体育锻炼时间的关系,对400名高一学生的一周课外体育锻炼时间进行调查,结果如下表所示
锻炼时间(分钟) | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) | [100,120) |
人数 | 40 | 60 | 80 | 100 | 80 | 40 |
(I)完成频率分布直方图,并估计该中学高一学生每周参加课外体育锻炼时间的众数;
(II)现采用分层抽样的方法抽取容量为20的样本,
2中课外体育锻炼时间在[80,120]分钟内的学生应抽取多少人?
②若从①中被抽取的学生中随机抽取2名,求这2名学生课外体育锻炼时间均在[80,100)分钟内的概率.
查看答案
如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为

.其中正确的有
(把所有正确的序号都填上).
查看答案
已知直线x+y+m=0与圆x
2+y
2=2交于不同的两点A、B,O是坐标原点,

,那么实数m的取值范围是
.
查看答案