满分5 > 高中数学试题 >

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)...

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x,则称(x,f(x))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数manfen5.com 满分网,请你根据上面探究结果,解答以下问题
(1)函数f(x)=manfen5.com 满分网x3-manfen5.com 满分网x2+3x-manfen5.com 满分网的对称中心为   
(2)计算manfen5.com 满分网+…+f(manfen5.com 满分网)=   
(1)根据函数f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得三次函数f(x)=x3-x2+3x-的对称中心. (2)由f(x)=x3-x2+3x-的对称中心为(,1),知f(x)+f(1-x)=2,由此能够求出+…+f(). 【解析】 (1)∵f(x)=x3-x2+3x-, ∴f′(x)=x2-x+3,f''(x)=2x-1, 令f''(x)=2x-1=0,得x=, ∵f()=+3×=1, ∴f(x)=x3-x2+3x-的对称中心为(,1), (2)∵f(x)=x3-x2+3x-的对称中心为(,1), ∴f(x)+f(1-x)=2, ∴+…+f()=2×1006=2012. 故答案为:(,1),2012.
复制答案
考点分析:
相关试题推荐
给出下列命题:
(1)y=1是幂函数;
(2)“x<1”是“x<2”的充分不必要条件;
(3)manfen5.com 满分网的解集是[2,+∞);
(4)函数y=tanx的图象关于点manfen5.com 满分网成中心对称;
(5)命题“若x=y,则sinx=siny”的逆否命题为真命题.
其中真命题的序号是    (写出所有正确命题的序号) 查看答案
函数f(x)=ex(x∈R)可表示为奇函数h(x)与偶函数g(x)的和,则h(x)=    查看答案
已知α∈(manfen5.com 满分网manfen5.com 满分网),tan(α-7π)=-manfen5.com 满分网,则sinα+cosα的值为    查看答案
函数manfen5.com 满分网的定义域为    查看答案
已知向量manfen5.com 满分网manfen5.com 满分网的夹角为θ,|manfen5.com 满分网+manfen5.com 满分网|=2manfen5.com 满分网,|manfen5.com 满分网-manfen5.com 满分网|=2,则θ的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.