满分5 > 高中数学试题 >

已知数列{an}的前n项和为Sn,满足Sn+2n=2an (1)证明:数列{an...

已知数列{an}的前n项和为Sn,满足Sn+2n=2an
(1)证明:数列{an+2}是等比数列.并求数列{an}的通项公式an
(2)若数列{bn}满足bn=log2(an+2),设Tn是数列manfen5.com 满分网的前n项和.求证:manfen5.com 满分网
(1)由Sn+2n=2an,知Sn=2an-2n.当n=1 时,S1=2a1-2,则a1=2,当n≥2时,Sn-1=2an-1-2(n-1),故an=2an-1+2,由此能够证明数列{an+2}是等比数列.并能求出数列{an}的通项公式an. (2)由bn=log2(an+2)==n+1,得,故,由此利用错位相减法能够求出Tn,并证明. 证明:(1)由Sn+2n=2an得 Sn=2an-2n 当n∈N*时,Sn=2an-2n,① 当n=1 时,S1=2a1-2,则a1=2, 则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).② ①-②,得an=2an-2an-1-2, 即an=2an-1+2, ∴an+2=2(an-1+2) ∴, ∴{an+2}是以a1+2为首项,以2为公比的等比数列. ∴an+2=4•2n-1, ∴an=2n+1-2. (2)证明:由bn=log2(an+2)==n+1, 得, 则,③   ④ ③-④,得 = = =, 所以 .
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网的离心率为manfen5.com 满分网,且过点P(1,manfen5.com 满分网),F为其右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点A(4,0)的直线l与椭圆相交于M,N两点(点M在A,N两点之间),若△AMF与△MFN的面积相等,试求直线l的方程.
查看答案
如图,△ABC是以∠ABC为直角三角形,SA⊥平面ABCD,SA=BC=2,AB=4.M、N、D分别是SC、AB、BC的中点.
(1)求证:MN⊥AB;
(2)(文科)求二面角S-ND-A的余弦值;
(3)(理科)求点A到平面SND的距离.

manfen5.com 满分网 查看答案
某车站每天上午发出两班客车(每班客车只有一辆车),第一班客车在8:00,8:20,8:40这三个时刻随机发出,且在8:00发出的概率为manfen5.com 满分网,8:20发出的概率为manfen5.com 满分网,8:40发出的概率为manfen5.com 满分网;第二班客车在9:00,9:20,9:40这三个时刻随机发出,且在9:00发出的概率为manfen5.com 满分网,9:20发出的概率为manfen5.com 满分网,9:40发出的概率为manfen5.com 满分网.两班客车发出时刻是相互独立的,一位旅客预计8:10到站.求:
(1)请预测旅客乘到第一班客车的概率;
(2)求旅客候车时间不超过50分钟的概率.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,S是该三角形的面积.
(1)若manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,求角B的度数;
(2)若a=8,manfen5.com 满分网manfen5.com 满分网,求b的值.
查看答案
非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”.现给出下列集合和运算:
①G={非负整数},⊕为整数的加法.
②G={偶数},⊕为整数的乘法.
③G={平面向量},⊕为平面向量的加法.
④G={二次三项式},⊕为多项式的加法.
⑤G={虚数},⊕为复数的乘法.
其中G关于运算⊕为“融洽集”的是    .(写出所有“融洽集”的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.