由直线方程的点斜式,可得直线AB的方程为y=(x-2),与椭圆的方程消去x,得(a2+b2)y2+b2y+4b2-a2b2=0.设A(x1,y1),B(x2,y2),由根与系数的关系结合已知条件得y1+y2=-=-y1,y1y2==-2y12,消去y1得关于a、b的方程,结合a2=b2+4联解,可得a=3,从而得到该椭圆的离心率.
【解析】
∵直线AB经过F(2,0)且倾斜角为60°,
∴AB的斜率k=tan60°=,得直线AB方程为y=(x-2)
将直线AB方程与椭圆=1联解,消去x得:(a2+b2)y2+b2y+4b2-a2b2=0
设A(x1,y1),B(x2,y2),得y1+y2=-,y1y2=
∵|BF|=2|AF|,
∴y1+y2=-y1=,y1y2=-2y12=
消去y1,得-2()2=…(1)
又∵椭圆的焦点F(2,0)
∴a2=b2+4,代入(1)式化简整理,得-96b4=-3b4(4b2+12),解之得b2=5
由此可得a2=9,a=3,所以椭圆的离心率e=
故选:B