数列{a
n}的前n项和为S
n,已知

,数列{b
n}满足

且b
2=4,b
5=32.
(1)分别求出数列{a
n}和数列{b
n}的通项公式;
(2)若数列{c
n}满足

,求数列{c
n}的前n项和T
n;
(3)设

,当n为奇数时,试判断方程T
n-P=2013是否有解,若有请求出方程的解,若没有,请说明理由.
考点分析:
相关试题推荐
已知函数f(x)=x
2-1,g(x)=a|x-1|,
(1)当a=1时求方程|f(x)|=g(x)的解;
(2)若方程|f(x)|=g(x)有两个不同的解,求a的值;
(3)若当x∈R时,不等式f(x)≥g(x)恒成立,求实数a的取值范围.
查看答案
如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,,点E为线段PB的中点,点M在AB弧上,且OM∥AC.
(1)求证:平面MOE∥平面PAC;
(2)求证:BC⊥平面PAC;
(3)求直线PB与平面PAC所成的角的正弦值.
查看答案
在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足条件:△ABC的周长为

,记动点C的轨迹为曲线W.
(1)求W的方程;
(2)曲线W上是否存在这样的点P:它到直线x=-1的距离恰好等于它到点B的距离?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案
如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为(5,3)的概率?
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.请问某个家庭获奖的概率为多少?
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.
查看答案
已知函数

的最小正周期为π,且点

在函数的图象上.
(1)确定函数f(x)的表达式,求f(x)取得最大值时x的取值集合;
(2)求函数f(x)的单调增区间.
查看答案