满分5 > 高中数学试题 >

已知椭圆的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为. (1)...

已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网,过点A(0,-b)和B(a,0)的直线与原点的距离为manfen5.com 满分网
(1)求椭圆的方程;
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
(1)直线AB方程为bx-ay-ab=0,依题意可得:,由此能求出椭圆的方程. (2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,再由根的判别式和根与系数的关系进行求解. 【解析】 (1)直线AB方程为bx-ay-ab=0, 依题意可得:, 解得:a2=3,b=1, ∴椭圆的方程为. (2)假设存在这样的值. , 得(1+3k2)x2+12kx+9=0, ∴△=(12k)2-36(1+3k2)>0…①, 设C(x1,y1),D(x2,y2), 则 而y1•y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4, 要使以CD为直径的圆过点E(-1,0), 当且仅当CE⊥DE时, 则y1x1+y2x2+1=-1, 即y1y2+(x1+1)(x2+1)=0, ∴(k2+1)x1x2+(2k+1)(x1+x1)+5=0…③ 将②代入③整理得k=, 经验证k=使得①成立综上可知,存在k=使得以CD为直径的圆过点E.
复制答案
考点分析:
相关试题推荐
椭圆短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆长轴端点的最短距离为manfen5.com 满分网,求此椭圆的标准方程.
查看答案
已知椭圆manfen5.com 满分网(a>b>0)的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点E(manfen5.com 满分网,0)的直线与椭圆相交与A,B两点,且F1A∥F2B,|F1A|=2|F2B|求椭圆的离心率.

manfen5.com 满分网 查看答案
已知命题P:函数y=lg(ax2-x+manfen5.com 满分网)定义域为R; 命题Q:函数y=(5-2a)x为增函数;若“p∨q”为真命题,“p∧q:”为假命题,求实数a的取值范围.
查看答案
已知椭圆manfen5.com 满分网的焦点为F1、F2,直线CD过焦点F1,则△F2CD的周长为   
manfen5.com 满分网 查看答案
命题“对任何x∈R,|x-2|+|x-4|>3”的否定是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.