满分5 > 高中数学试题 >

在△ABC中,已知. (1)求证:tanB=3tanA; (2)若cosC=,求...

在△ABC中,已知manfen5.com 满分网
(1)求证:tanB=3tanA;
(2)若cosC=manfen5.com 满分网,求A的值.
(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA; (2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数. 【解析】 (1)∵•=3•, ∴cbcosA=3cacosB,即bcosA=3acosB, 由正弦定理=得:sinBcosA=3sinAcosB, 又0<A+B<π,∴cosA>0,cosB>0, 在等式两边同时除以cosAcosB,可得tanB=3tanA; (2)∵cosC=,0<C<π, sinC==, ∴tanC=2, 则tan[π-(A+B)]=2,即tan(A+B)=-2, ∴=-2, 将tanB=3tanA代入得:=-2, 整理得:3tan2A-2tanA-1=0,即(tanA-1)(3tanA+1)=0, 解得:tanA=1或tanA=-, 又coaA>0,∴tanA=1, 又A为三角形的内角, 则A=.
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网,函数manfen5.com 满分网
(1)求f(x)的最小正周期,并求其图象对称中心的坐标;
(2)当manfen5.com 满分网时,求函数f(x)的值域.
查看答案
如图放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x轴滚动,设顶点A(x,y)的轨迹方程是y=f(x),则f(x)在其相邻两个零点间的图象与x轴所围区域的面积为   
manfen5.com 满分网 查看答案
设函数f(x)=x•2x+x,A为坐标原点,An为函数y=f(x)图象上横坐标为n(n∈N*)的点,向量manfen5.com 满分网,i=(1,0),设θn为an与i的夹角,则manfen5.com 满分网=    查看答案
已知数列{an}的通项公式是manfen5.com 满分网,若对于n∈N+,都有an+1>an成立,则实数k的取值范围是    查看答案
函数manfen5.com 满分网的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.