满分5 > 高中数学试题 >

设函数f(x)=alnx-bx2(x>0); (1)若函数f(x)在x=1处与直...

设函数f(x)=alnx-bx2(x>0);
(1)若函数f(x)在x=1处与直线manfen5.com 满分网相切
①求实数a,b的值;
②求函数manfen5.com 满分网上的最大值.
(2)当b=0时,若不等式f(x)≥m+x对所有的manfen5.com 满分网都成立,求实数m的取值范围.
(1)①先求出原函数的导数:,欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.列出关于a,b的方程求得a,b的值.②研究闭区间上的最值问题,先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值. (2)考虑到当b=0时,f(x)=alnx若不等式f(x)≥m+x对所有的都成立,转化为alnx≥m+x对所有的恒成立问题,再令h(a)=alnx-x,则h(a)为一次函数,问题又转化为m≤h(a)min最后利用研究函数h(x)的单调性即得. 【解析】 (1)① ∵函数f(x)在x=1处与直线相切∴, 解得(3分) ② 当时,令f'(x)>0得; 令f'(x)<0,得1<x≤e∴上单调递增,在[1,e]上单调递减,∴(7分)(8分) (2)当b=0时,f(x)=alnx若不等式f(x)≥m+x对所有的都成立, 则alnx≥m+x对所有的都成立, 即m≤alnx-x,对所有的都成立,(8分) 令h(a)=alnx-x,则h(a)为一次函数,m≤h(a)min∵x∈(1,e2],∴lnx>0,∴上单调递增 ∴h(a)min=h(0)=-x,∴m≤-x对所有的x∈(1,e2]都成立, ∵1<x≤e2, ∴-e2≤-x<-1,∴m≤(-x)min=-e2.(13分)
复制答案
考点分析:
相关试题推荐
已知数列{an}中各项均为正数,Sn是数列{an}的前n项和,且Sn=manfen5.com 满分网(amanfen5.com 满分网+an).
(1)求数列{an}的通项公式
(2)对n∈N*,试比较manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网与a2的大小.
查看答案
设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,且manfen5.com 满分网
(Ⅰ)求角B的大小;
(Ⅱ)若x∈[0,π),求函数f(x)=sin(x-B)+sinx的值域.
查看答案
已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.
查看答案
已知α为锐角,sinα=manfen5.com 满分网,tan(α-β)=manfen5.com 满分网,求cos2α和tanβ的值.
查看答案
已知数列{an)的通项公式为an=2n-3,将数列中各项进行分组如下.第1组:a1;第2组:a2,a3;…;如果第k组的最后一个数为am,那么第k+1组的(k+1)个数依次排列为:am+1,am+2,…,am+k+1(m,k∈N*),则第10组的第一个数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.