满分5 > 高中数学试题 >

已知函数f(x)=alnx-ax-3(a∈R). (Ⅰ)求函数f(x)的单调区间...

已知函数f(x)=alnx-ax-3(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数manfen5.com 满分网在区间(t,3)上总不是单调函数,求m的取值范围;
(Ⅲ)求证:manfen5.com 满分网
利用导数求函数的单调区间的步骤是①求导函数f′(x);②解f′(x)>0(或<0);③得到函数的增区间(或减区间), 对于本题的(1)在求单调区间时要注意函数的定义域以及对参数a的讨论情况; (2)点(2,f(2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a值,代入得g(x)的解析式,由t∈[1,2],且g(x)在区间(t,3)上总不是单调函数可知:,于是可求m的范围. (3)是近年来高考考查的热点问题,即与函数结合证明不等式问题,常用的解题思路是利用前面的结论构造函数,利用函数的单调性,对于函数取单调区间上的正整数自变量n有某些结论成立,进而解答出这类不等式问题的解. 【解析】 (Ⅰ)(2分) 当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞); 当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1]; 当a=0时,f(x)不是单调函数(4分) (Ⅱ)得a=-2,f(x)=-2lnx+2x-3 ∴, ∴g'(x)=3x2+(m+4)x-2(6分) ∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=-2 ∴ 由题意知:对于任意的t∈[1,2],g′(t)<0恒成立, 所以有:,∴(10分) (Ⅲ)令a=-1此时f(x)=-lnx+x-3,所以f(1)=-2, 由(Ⅰ)知f(x)=-lnx+x-3在(1,+∞)上单调递增, ∴当x∈(1,+∞)时f(x)>f(1),即-lnx+x-1>0, ∴lnx<x-1对一切x∈(1,+∞)成立,(12分) ∵n≥2,n∈N*,则有0<lnn<n-1, ∴ ∴
复制答案
考点分析:
相关试题推荐
(文科做)已知向量manfen5.com 满分网=(cosmanfen5.com 满分网x,sinmanfen5.com 满分网x),manfen5.com 满分网=(cosmanfen5.com 满分网,-sinmanfen5.com 满分网),且manfen5.com 满分网,求:
manfen5.com 满分网及|manfen5.com 满分网|;
②若f(x)=manfen5.com 满分网-2λ|manfen5.com 满分网|的最小值是manfen5.com 满分网,求实数λ的值.
查看答案
已知向量manfen5.com 满分网=(2sinx,2cosx),manfen5.com 满分网=(manfen5.com 满分网cosx,cosx),f(x)=manfen5.com 满分网manfen5.com 满分网-1.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标先缩短到原来的manfen5.com 满分网,把所得到的图象再向左平移manfen5.com 满分网单位,得到函数y=g(x)的图象,求函数y=g(x)在区间[0,manfen5.com 满分网]上的最小值.
查看答案
已知函数f(x)=manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)若f(x)=1,求manfen5.com 满分网的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足manfen5.com 满分网,求f(B)的取值范围.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网互相垂直,其中manfen5.com 满分网
(1)求sinθ和cosθ的值;
(2)若manfen5.com 满分网,求cosφ的值.
查看答案
已知tan(manfen5.com 满分网)=2,θ为锐角,求cos(manfen5.com 满分网+θ)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.