满分5 > 高中数学试题 >

若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC...

若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC( )
A.一定是锐角三角形
B.一定是直角三角形
C.一定是钝角三角形
D.可能是锐角三角形,也可能是钝角三角形
先根据正弦定理及题设,推断a:b:c=5:11:13,再通过余弦定理求得cosC的值小于零,推断C为钝角. 【解析】 ∵根据正弦定理, 又sinA:sinB:sinC=5:11:13 ∴a:b:c=5:11:13, 设a=5t,b=11t,c=13t(t≠0) ∵c2=a2+b2-2abcosC ∴cosC===-<0 ∴角C为钝角. 故选C
复制答案
考点分析:
相关试题推荐
对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
查看答案
命题“所有能被2整除的数都是偶数”的否定是( )
A.所有不能被2整除的整数都是偶数
B.所有能被2整除的整数都不是偶数
C.存在一个不能被2整除的整数是偶数
D.存在一个能被2整除的整数不是偶数
查看答案
已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是( )
A.(-∞,-1]
B.[1,+∞)
C.[-1,1]
D.(-∞,-1]∪[1,+∞)
查看答案
计算1-2sin222.5°的结果等于( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n的值;如果不存在,说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.