已知函数f(x)=(ax
2+bx+c)e
x在x=1处取得极小值,其图象过点A(0,1),且在点处切线的斜率为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)的定义域D,若存在区间[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],则称区间[m,n]为函数g(x)的“保值区间”.
(ⅰ)证明:当x>1时,函数f(x)不存在“保值区间”;
(ⅱ)函数f(x)是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不存在,说明理由.
查看答案
甲,乙两人进行射击比赛,每人射击6次,他们命中的环数如下表:
(Ⅰ)根据上表中的数据,判断甲,乙两人谁发挥较稳定;
(Ⅱ)把甲6次射击命中的环数看成一个总体,用简单随机抽样方法从中抽取两次命中的环数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.
查看答案