先根据正切函数是奇函数,因而原点(0,0)是它的对称中心,以及周期性可知点(kπ,0)都是它的对称中心,然后平移坐标系,使原点(0,0)移到(,0)得到y=tan(x+)=-cotx,依旧是奇函数,点(kπ-,0)也是对称中心,综合到一起就得到对称中心是(k+,0).(k是整数)
【解析】
tan(-x)=-tanx,因此正切函数是奇函数,因而原点(0,0)是它的对称中心.
又因为正切函数的周期是π,所以点(kπ,0)都是它的对称中心.
平移坐标系,使原点(0,0)移到(,0)得到y=tan(x+)=-cotx,依旧是奇函数,
所以在新坐标系中点(kπ,0)也是对称中心,返回原坐标系,这些点的原坐标是(kπ-,0)
综合到一起就得到对称中心是(k+,0).(k是整数)
故答案为:(k+,0).(k是整数)