满分5 > 高中数学试题 >

椭圆的离心率为,长轴端点与短轴端点间的距离为. (Ⅰ)求椭圆C的方程; (Ⅱ)过...

椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,长轴端点与短轴端点间的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,4)的直线l与椭圆C交于两点E,F,O为坐标原点,若△OEF为直角三角形,求直线l的斜率.
(Ⅰ)由已知,a2+b2=5,由此能够求出椭圆C的方程. (Ⅱ)根据题意,过点D(0,4)满足题意的直线斜率存在,设l:y=kx+4,联立,,再由根与系数的关系求解. 【解析】 (Ⅰ)由已知,a2+b2=5, 又a2=b2+c2,解得a2=4,b2=1, 所以椭圆C的方程为; (Ⅱ)根据题意,过点D(0,4)满足题意的直线斜率存在,设l:y=kx+4, 联立,,消去y得(1+4k2)x2+32kx+60=0, △=(32k)2-240(1+4k2)=64k2-240, 令△>0,解得. 设E,F两点的坐标分别为(x1,y1),(x2,y2), (ⅰ)当∠EOF为直角时, 则, 因为∠EOF为直角,所以,即x1x2+y1y2=0, 所以(1+k2)x1x2+4k(x1+x2)+16=0, 所以,解得. (ⅱ)当∠OEF或∠OFE为直角时,不妨设∠OEF为直角, 此时,kOE•k=-1,所以,即x12=4y1-y12①, 又;②, 将①代入②,消去x1得3y12+4y1-4=0, 解得或y1=-2(舍去), 将代入①,得, 所以, 经检验,所求k值均符合题意,综上,k的值为和.
复制答案
考点分析:
相关试题推荐
如图,是第七届国际数学教育大会(ICME-7)的会徽,它是由一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,它可以形成近似的等角螺线.记an=|OAn|,n=1,2,3,….
(1)写出数列的前4项;
(2)猜想数列{an}的通项公式(不要求证明);
(3)若数列{bn} 满足manfen5.com 满分网,试求数列{bn} 的前n项和Sn

manfen5.com 满分网 查看答案
求圆心在直线l1:y-3x=0上,与x轴相切,且被直线l2:x-y=0截得弦长为manfen5.com 满分网的圆的一般方程.
查看答案
manfen5.com 满分网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.求证:
(1)C1O∥面AB1D1
(2)A1C⊥面AB1D1
查看答案
给定两个命题,命题p:对任意实数x都有ax2+ax+1>0恒成立,命题q:关于x的方程x2-x+a=0有实数根,如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.
查看答案
已知△ABC中,已知a=3manfen5.com 满分网,c=2,B=150°,求b及S△ABC
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.