(1)由题意知Sn+12=(Sn+1-Sn)(Sn+1+k),-Sn+1Sn+k(Sn+1-Sn)=0,等式两边同除
由此可知.
(2)由(1)知:,由此可知.
(3)S1S2+S2S3+…+SnSn+1===.
证明:(1)由Sn+12=an+1•(Sn+1+k)而an+1=Sn+1-Sn
∴Sn+12=(Sn+1-Sn)(Sn+1+k)
∴-Sn+1Sn+k(Sn+1-Sn)=0
等式两边同除
∴;(4分)
(2)由(1)知:为首项,
以为公差的等差数列,
∴
∴;(8分)
(3)S1S2+S2S3+…+SnSn+1
=
=
=.(12分)