满分5 > 高中数学试题 >

已知数列{an}满足:a1=1,a2=a(a>0),数列{bn}满足bn=ana...

已知数列{an}满足:a1=1,a2=a(a>0),数列{bn}满足bn=anan+1(n∈N*
(Ⅰ)若{an}是等差数列,且b3=12,求数列{an}的通项公式.
(Ⅱ)若{an}是等比数列,求数列{bn}的前n项和Sn
(Ⅲ)若{bn}是公比为a-1的等比数列时,{an}能否为等比数列?若能,求出a的值;若不能,请说明理由.
(Ⅰ)在bn表达式中取n=3,结合等差数列的通项公式解出公差d,从而得出数列{an}的通项公式; (Ⅱ)由等比数列的通项公式求出数列{an}的通项公式,再代入bn=anan+1 ,得出数列{bn}的通项公式,最后用等比数列求和公式算出结果; (Ⅲ)先假设命题正确,再利用数列{an}的前3项得出矛盾,从而说明,数列{an}不能为等比数列. 【解析】 (Ⅰ)∵{an}是等差数列a1=1,a2=a,bn=anan+1,b3=12 ∴b3=a3a4=(a1+2d)((a1+3d)=(1+2d)(1+3d)=12 即d=1或d= 又因a=a1+d=1+d>0得d>-1 ∴d=1 ∴an=n(4分) (Ⅱ){an}是等比数列,首项a1=1,a2=a,故公比, 所以an=an-1,代入{bn}的表达式得 bn=anan+1=a2n-1,可得 ∴数列{bn}是以a为首项,公比为 a2的等比数列 故Sn=(5分) (Ⅲ){an}不能为等比数列,理由如下: ∵bn=anan+1,{bn}是公比为a-1的等比数列 ∴ ∴a3=a-1 假设{an}为等比数列,由a1=1,a2=a得a3=a2,所以a2=a-1 因此此方程无解,所以数列一定不能等比数列.(14分)
复制答案
考点分析:
相关试题推荐
已知F1、F2分别是椭圆manfen5.com 满分网的左、右焦点,P是此椭圆上的一动点,并且manfen5.com 满分网的取值范围是manfen5.com 满分网
(Ⅰ)求此椭圆的方程;
(Ⅱ)点A是椭圆的右顶点,直线y=x与椭圆交于B、C两点(C在第一象限内),又P、Q是椭圆上两点,并且满足manfen5.com 满分网,求证:向量manfen5.com 满分网共线.
查看答案
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(Ⅲ)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.
查看答案
如图①,E,F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1-EF-B,若M为线段A1C中点.
求证:(1)直线FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
manfen5.com 满分网
查看答案
在三角形ABC中,已知manfen5.com 满分网,设∠CAB=α,
(1)求角α的值;
(2)若manfen5.com 满分网,其中manfen5.com 满分网,求cosβ的值.
查看答案
对任意实数a,b,定义:manfen5.com 满分网,如果函数manfen5.com 满分网,h(x)=-x+2,那么函数G(x)=F(F(f(x),g(x)),h(x))的最大值等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.