满分5 > 高中数学试题 >

已知F1、F2分别是椭圆的左、右焦点,P是此椭圆上的一动点,并且的取值范围是. ...

已知F1、F2分别是椭圆manfen5.com 满分网的左、右焦点,P是此椭圆上的一动点,并且manfen5.com 满分网的取值范围是manfen5.com 满分网
(Ⅰ)求此椭圆的方程;
(Ⅱ)点A是椭圆的右顶点,直线y=x与椭圆交于B、C两点(C在第一象限内),又P、Q是椭圆上两点,并且满足manfen5.com 满分网,求证:向量manfen5.com 满分网共线.
(I)由题意设P(x,y),F1(-c,0),F2(c,0)利用的取值范围所以∠PCQ的平分线垂直于x轴.是,得到a,b的方程,求解即可; (II)有的平分线平行,所以∠PCQ的平分线垂直于x轴,进而建立方程,解出C点,再设出PC方程进而得到QC的方程,把它与椭圆方程联立得到直线PQ的斜率,与直线AB比较即可求证. 【解析】 (Ⅰ)设P(x,y),F1(-c,0),F2(c,0), 其中,. 从而. 由于, 即. 又已知, 所以 从而椭圆的方程是. (Ⅱ)因为的平分线平行, 所以∠PCQ的平分线垂直于x轴. 由 解得. 不妨设PC的斜率为k,则QC的斜率为-k, 因此PC和QC的方程分别为y=k(x-1)+1,y=-k(x-1), 其中 消去y并整理得(1+3k2)x2-6k(k-1)x+3k2-6k-1=0(*). ∵C(1,1)在椭圆上, ∴x=1是方程(*)的一个根. 从而,同理, 从而直线PQ的斜率为. 又知A(2,0),B(-1,-1), 所以, ∴向量与共线.
复制答案
考点分析:
相关试题推荐
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(Ⅲ)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.
查看答案
如图①,E,F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1-EF-B,若M为线段A1C中点.
求证:(1)直线FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
manfen5.com 满分网
查看答案
在三角形ABC中,已知manfen5.com 满分网,设∠CAB=α,
(1)求角α的值;
(2)若manfen5.com 满分网,其中manfen5.com 满分网,求cosβ的值.
查看答案
对任意实数a,b,定义:manfen5.com 满分网,如果函数manfen5.com 满分网,h(x)=-x+2,那么函数G(x)=F(F(f(x),g(x)),h(x))的最大值等于    查看答案
已知椭圆manfen5.com 满分网的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在一点P使manfen5.com 满分网,则该椭圆的离心率的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.