满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD...

manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C-PB-D的大小.
法一:(1)连接AC,AC交BD于O,连接EO要证明PA∥平面EDB,只需证明直线PA平行平面EDB内的直线EO; (2)要证明PB⊥平面EFD,只需证明PB垂直平面EFD内的两条相交直线DE、EF,即可; (3)必须说明∠EFD是二面角C-PB-D的平面角,然后求二面角C-PB-D的大小. 法二:如图所示建立空间直角坐标系,D为坐标原点,设DC=a. (1)连接AC,AC交BD于G,连接EG,求出,即可证明PA∥平面EDB; (2)证明EF⊥PB,,即可证明PB⊥平面EFD; (3)求出,利用,求二面角C-PB-D的大小. 【解析】 方法一: (1)证明:连接AC,AC交BD于O,连接EO. ∵底面ABCD是正方形,∴点O是AC的中点 在△PAC中,EO是中位线,∴PA∥EO 而EO⊂平面EDB且PA⊄平面EDB, 所以,PA∥平面EDB (2)证明: ∵PD⊥底面ABCD且DC⊂底面ABCD,∴PD⊥DC ∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线, ∴DE⊥PC.① 同样由PD⊥底面ABCD,得PD⊥BC. ∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC. 而DE⊂平面PDC,∴BC⊥DE.② 由①和②推得DE⊥平面PBC. 而PB⊂平面PBC,∴DE⊥PB 又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD. (3)【解析】 由(2)知,PB⊥DF,故∠EFD是二面角C-PB-D的平面角. 由(2)知,DE⊥EF,PD⊥DB. 设正方形ABCD的边长为a, 则,. 在Rt△PDB中,. 在Rt△EFD中,,∴. 所以,二面角C-PB-D的大小为. 方法二:如图所示建立空间直角坐标系,D为坐标原点,设DC=a. (1)证明:连接AC,AC交BD于G,连接EG. 依题意得. ∵底面ABCD是正方形,∴G是此正方形的中心,故点G的坐标为且. ∴,这表明PA∥EG. 而EG⊂平面EDB且PA⊄平面EDB,∴PA∥平面EDB. (2)证明;依题意得B(a,a,0),. 又,故. ∴PB⊥DE. 由已知EF⊥PB,且EF∩DE=E,所以PB⊥平面EFD. (3)【解析】 设点F的坐标为(x,y,z),,则(x,y,z-a)=λ(a,a,-a). 从而x=λa,y=λa,z=(1-λ)a.所以. 由条件EF⊥PB知,,即,解得 ∴点F的坐标为,且, ∴ 即PB⊥FD,故∠EFD是二面角C-PB-D的平面角. ∵,且,, ∴. ∴. 所以,二面角C-PB-D的大小为.
复制答案
考点分析:
相关试题推荐
某飞机制造公司一年中最多可生产某种型号的飞机100架.已知制造x架该种飞机的产值函数为R(x)=3000x-20x2(单位:万元),成本函数C(x)=500x+4000(单位:万元).利润是收入与成本之差,又在经济学中,函数f(x)的边际利润函数Mf(x)定义为:Mf(x)=f(x+1)-f(x)
(1)求利润函数P(x)及边际利润函数MP(x);(利润=产值-成本)
(2)问该公司的利润函数P(x)与边际利润函数MP(x)是否具有相等的最大值?
查看答案
一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球;求
(1)圆锥的侧面积;
(2)圆锥的内切球的体积.

manfen5.com 满分网 查看答案
(1)求经过直线l1:7x-8y-1=0和l2:2x+17y+9=0的交点,且平行于直线2x-y+7=0的直线方程.
(2)已知直线l的方程是mx+4y+2m-8=0,圆C的方程是x2+y2-4x+6y-29=0,求直线l被圆截得的弦长最短时的l的方程.
查看答案
(1)求值:lg2lg50+lg5lg20-log34log23lg2lg5;
(2)已知log56=a,log54=b.用a,b表示log2512.
查看答案
下列说法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,+a+4])是偶函数,则实数b=2;②f(x)=manfen5.com 满分网既是奇函数又是偶函数;③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞]时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f=x•f(y)+y•f(x),则f(x)是奇函数.其中所有正确命题的序号是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.