满分5 > 高中数学试题 >

若M={异面直线所成角},N={斜线与平面所成角},P={直线与平面所成角},则...

若M={异面直线所成角},N={斜线与平面所成角},P={直线与平面所成角},则有( )
A.M⊂N⊂P
B.N⊂M⊂P
C.P⊂M⊂N
D.N⊂P⊂M
根据异面直线所成角、斜线与平面所成角、直线与平面所成角的范围得到三集合的关系. 【解析】 ∵异面直线所成角的范围为(0°,90°] 斜线与平面所成角的范围为(0°,90°) 直线与平面所成角的范围为[0°,90°] ∴N⊂M⊂P 故选B.
复制答案
考点分析:
相关试题推荐
已知多面体ABCDFE中,四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD,O、M分别为AB、FC的中点,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面FBC;
(Ⅱ)求证:OM∥平面DAF.

manfen5.com 满分网 查看答案
已知圆C:x2+y2+ax-4y+1=0(a∈R),过定点P(0,1)作斜率为1的直线交圆C于A、B两点,P为线段AB的中点.
(Ⅰ)求a的值;
(Ⅱ)设E为圆C上异于A、B的一点,求△ABE面积的最大值;
(Ⅲ)从圆外一点M向圆C引一条切线,切点为N,且有|MN|=|MP|,求|MN|的最小值,并求|MN|取最小值时点M的坐标.
查看答案
如图,矩形ABCD中,已知AB=2AD,E为AB的中点,将△AED沿DE折起,使AB=AC,求证:平面ADE⊥平面BCDE.
manfen5.com 满分网
查看答案
已知圆C经过A(1,-1),B(5,3),并且被直线m:3x-y=0平分圆的面积.
(Ⅰ)求圆C的方程;
(Ⅱ)若过点D(0,-1),且斜率为k的直线l与圆C有两个不同的公共点,求实数k的取值范围.
查看答案
(Ⅰ)已知△ABC的三个顶点坐标为A(0,5)、B(1,-2)、C(-6,4),求BC边上的高所在直线的方程;
(Ⅱ)设直线l的方程为 (a-1)x+y-2-a=0(a∈R).若直线l在两坐标轴上的截距相等,求直线l的方程.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.