满分5 > 高中数学试题 >

如图,在正方体ABCD-A1B1C1D1中,E、F 为棱AD、AB的中点. (Ⅰ...

manfen5.com 满分网如图,在正方体ABCD-A1B1C1D1中,E、F 为棱AD、AB的中点.
(Ⅰ)求证:EF∥平面CB1D1
(Ⅱ)求证:平面CAA1C1⊥平面CB1D1
(Ⅰ)欲证EF∥平面CB1D1,根据直线与平面平行的判定定理可知只需证EF与平面CB1D1内一直线平行,连接BD,根据中位线可知EF∥BD,则EF∥B1D1,又B1D1⊂平面CB1D1,EF⊄平面CB1D1,满足定理所需条件; (Ⅱ)欲证平面CAA1C1⊥平面CB1D1,根据面面垂直的判定定理可知在平面CB1D1内一直线与平面CAA1C1垂直,而AA1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,则AA1⊥B1D1,A1C1⊥B1D1,满足线面垂直的判定定理则B1D1⊥平面CAA1C1,而B1D1⊂平面CB1D1,满足定理所需条件. 【解析】 (Ⅰ)证明:连接BD. 在正方体AC1中,对角线BD∥B1D1. 又因为E、F为棱AD、AB的中点, 所以EF∥BD. 所以EF∥B1D1.(4分) 又B1D1⊂平面CB1D1,EF⊄平面CB1D1, 所以EF∥平面CB1D1.(7分) (Ⅱ)因为在长方体AC1中, AA1⊥平面A1B1C1D1,而B1D1⊂平面A1B1C1D1, 所以AA1⊥B1D1.(10分) 又因为在正方形A1B1C1D1中,A1C1⊥B1D1, 所以B1D1⊥平面CAA1C1.(12分) 又因为B1D1⊂平面CB1D1, 所以平面CAA1C1⊥平面CB1D1.(14分)
复制答案
考点分析:
相关试题推荐
已知△ABC中,向量manfen5.com 满分网;且manfen5.com 满分网
(1)求角A;
(2)若角A,B,C所对的边分别为a,b,c,且manfen5.com 满分网,求△ABC的面积的最大值.
查看答案
已知函数manfen5.com 满分网存在两个极值点x1,x2,且x1<x2
(1)求证:函数f(x)的导函数f′(x)在(-2,0)上是单调函数;
(2)设A(x1,f(x1)),B(x2,f(x2)),若直线AB的斜率不小于-2,求实数a的取值范围.
查看答案
设P是以F1、F2为焦点的椭圆manfen5.com 满分网上的任一点,∠F1PF2最大值是120°,求椭圆离心率.
查看答案
设正数数列{an}的前n项和Sn满足manfen5.com 满分网
(I)求数列{an}的通项公式;
(II)设manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
在锐角△ABC中,已知内角A、B、C所对的边分别为a、b、c,且manfen5.com 满分网(tanA-tanB)=1+tanA•tanB.
(1)若a2-ab=c2-b2,求A、B、C的大小;
(2)已知向量manfen5.com 满分网manfen5.com 满分网,求manfen5.com 满分网|的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.