满分5 > 高中数学试题 >

设圆C1:x2+y2-10x-6y+32=0,动圆C2:x2+y2-2ax-2(...

设圆C1:x2+y2-10x-6y+32=0,动圆C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求证:圆C1、圆C2相交于两个定点;
(Ⅱ)设点P是椭圆manfen5.com 满分网上的点,过点P作圆C1的一条切线,切点为T1,过点P作圆C2的一条切线,切点为T2,问:是否存在点P,使无穷多个圆C2,满足PT1=PT2?如果存在,求出所有这样的点P;如果不存在,说明理由.
(Ⅰ)化简动圆C2确定它过的定点,在圆C1上即可. (Ⅱ)设存在,再设P的坐标,求出PT1,PT2令其相等,求得关系式,P适合椭圆方程,可求得P的坐标. 【解析】 (Ⅰ)将方程x2+y2-2ax-2(8-a)y+4a+12=0化为x2+y2-16y+12+(-2x+2y+4)a=0, 令得或, 所以圆C2过定点(4,2)和(6,4),(4分) 将代入x2+y2-10x-6y+32=0, 左边=16+4-40-12+32=0=右边, 故点(4,2)在圆C1上,同理可得点(6,4)也在圆C1上, 所以圆C1、圆C2相交于两个定点(4,2)和(6,4);(6分) (2)设P(x,y),则,(8分),(10分) PT1=PT2即-10x-6y+32=-2ax-2(8-a)y+4a+12, 整理得(x-y-2)(a-5)=0(*)(12分) 存在无穷多个圆C2,满足PT1=PT2的充要条件为有解, 解此方程组得或,(14分) 故存在点P,使无穷多个圆C2,满足PT1=PT2,点P的坐标为.(16分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=2,D、E、F分别为B1A、C1C、BC的中点.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)求证:B1F⊥平面AEF;
(Ⅲ)求三棱锥E-AB1F的体积.
查看答案
在△ABC中,a,b,c分别是角A、B、C所对的边,且b2=ac,向量m=(cos(A-C),1)和n=(1,cosB)满足manfen5.com 满分网
(1)求sinAsinC的值;
(2)求证:三角形ABC为等边三角形.
查看答案
已知:M={a|函数y=2sinax在[manfen5.com 满分网]上是增函数},N={b|方程3-|x-1|-b+1=0有实数解},设D=M∩N,且定义在R上的奇函数manfen5.com 满分网在D内没有最小值,则m的取值范围是    查看答案
已知定义在R上的函数f(x)满足f(2)=3,f′(x)-1<0,则不等式f(x2)<x2+1的解集为    查看答案
已知向量manfen5.com 满分网=(2,1),manfen5.com 满分网=(1,7),manfen5.com 满分网=(5,1),设X是直线OP上的一点(O为坐标原点),那么manfen5.com 满分网的最小值是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.