满分5 > 高中数学试题 >

已知在各项不为零的数列{an}中,a1=1,anan-1+an-an-1=0(n...

已知在各项不为零的数列{an}中,a1=1,anan-1+an-an-1=0(n≥2,n∈N+
(I)求数列{an}的通项;
(Ⅱ)若数列{bn}满足bn=anan+1,数列{bn}的前n项和为Sn,求manfen5.com 满分网
(Ⅰ)整理anan-1+an-an-1=0得判断出数列{}为等差数列,进而求得数列{}的通项公式,则an可得. (Ⅱ)把(1)中的an代入bn=anan+1,求得数列{bn}的通项公式,进而根据裂项法求得数列的前n项的和,则其极限可得. 【解析】 (Ⅰ)依题意,an≠0,故可将anan-1+an-an-1=0(n≥2)整理得: 所以即 n=1,上式也成立,所以 (Ⅱ)∵bn=anan+1 ∴ ∴= ∴
复制答案
考点分析:
相关试题推荐
设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和.求证:manfen5.com 满分网
查看答案
在数列an中,a1=2,an+1=2an+2n+1(n∈N).
(1)求证:数列manfen5.com 满分网为等差数列;
(2)若m为正整数,当manfen5.com 满分网
查看答案
在数列{an}中,已知a1=2,an+1=4an-3n+1,n∈N*
(1)设bn=an-n,求数列{bn}的通项公式;
(2)设数列an的前n项和为Sn,证明:对任意的n∈N*,不等式Sn+1≤4Sn恒成立.
查看答案
已知数列an的前n项和manfen5.com 满分网,n∈N+
(1)求an的通项公式;
(2)设n∈N+,集合An={y|y=ai,i≤n,i∈N+},B={y|y=4m+1,m∈N+}.现在集合An中随机取一个元素y,记y∈B的概率为p(n),求p(n)的表达式.
查看答案
在等差数列{an}中,设Sn为它的前n项和,若S15>0,S16<0,且点A(3,a3)与B(5,a5)都在斜率为-2的直线l上.
(Ⅰ)求a1的取值范围;
(Ⅱ)指出manfen5.com 满分网中哪个值最大,并说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.