满分5 > 高中数学试题 >

已知函数f(x)=x2+2x. (Ⅰ)数列an满足:a1=1,an+1=f'(a...

已知函数f(x)=x2+2x.
(Ⅰ)数列an满足:a1=1,an+1=f'(an),求数列an的通项公式;
(Ⅱ)已知数列bn满足b1=t>0,bn+1=f(bn)(n∈N*),求数列bn的通项公式;
(Ⅲ)设manfen5.com 满分网的前n项和为Sn,若不等式λ<Sn对所有的正整数n恒成立,求λ的取值范围.
(Ⅰ)求出导函数,代入得到an+1=2an+2,两边加2化简得an+2为首项为a1+2,公比为2的等比数列,写出通项,求出an即可; (Ⅱ)将bn代入到f(bn)中化简bn+1=f(bn)得到bn+1+1=(bn+1)2,两边取对数得到lg(bn+1)的公比为2的等比数列得到bn的通项; (Ⅲ)由ck+1=bk2+2bk,和得到ck的通项公式,求出前n项的和Sn且在n∈[1,+∞)上是增函数,求出Sn的最小值为S1,令λ<S1求出λ的取值范围. 【解析】 (Ⅰ)f'(x)=2x+2, ∴an+1=2an+2∴an+1+2=2(an+2),因为an+2为等比数列,∴an+2=(a1+2)2n-1∴an=3•2n-1-2 (Ⅱ)由已知得bn>0,bn+1+1=(bn+1)2, ∴lg(bn+1+1)=2lg(bn+1), ∴又lg(b1+1)=lg(t+1)≠0,所以lg(bn+1)的公比为2的等比数列, ∴bn=(t+1)2n-1-1 (Ⅲ)∵bk+1=bk2+2bk,∴,,k=1,2,n∴=, ∵t>0,∴t+1>1,∴Sn在n∈[1,+∞)上是增函数 ∴Sn≥S1==,又不等式λ<Sn对所有的正整数n恒成立, ∴,故λ的取值范围是(-∞,
复制答案
考点分析:
相关试题推荐
对于数列an,(1)已知an是一个公差不为零的等差数列,a5=6.
①当a3=2时,若自然数n1,n2,…,nt,…满足5<n1<n2<…<nt<…,且a3,a5,an1,an2,…,ant,…是等比数列,试用t表示nt
②若存在自然数n1,n2,…,nt,…满足5<n1<n2<…<nt<…,且a3,a5,an1,an2,…,ant,…构成一个等比数列.求证:当a3是整数时,a3必为12的正约数.
(2)若数列an满足an+1an+3an+1+an+4=0,且a2009小于数列an中的其他任何一项,求a1的取值范围.
查看答案
设数列{an}的前n项和为Sn,对一切n∈N*,点(n,manfen5.com 满分网)都在函数f(x)=x+manfen5.com 满分网的图象上.
(1)求a1,a2,a3的值,猜想an的表达式,并证明你的猜想.
(2)设An为数列{manfen5.com 满分网}的前n项积,是否存在实数a,使得不等式Anmanfen5.com 满分网对一切n∈N*都成立?若存在,求出a的取值范围,若不存在,说明理由.
查看答案
数列{an}的前n项和为Sn=n2,数列{bn}满足b1=1,且bn=2bn-1+1,n≥2.
(1)求an,bn的表达式;
(2)设cn=an•bn,求数列{cn}的前n项和Tn
查看答案
设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•…•xn的值为    查看答案
数列{an}的前n项和为Sn,满足Sn=manfen5.com 满分网,设manfen5.com 满分网,则数列manfen5.com 满分网的前19项和为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.