满分5 > 高中数学试题 >

设椭圆C:的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x...

设椭圆C:manfen5.com 满分网的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且manfen5.com 满分网
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线l:manfen5.com 满分网相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.


manfen5.com 满分网
(1)设Q(x,0),由F2(c,0),A(0,b)结合向量条件及向量运算得出关于a,c的等式,从而求得椭圆的离心率即可; (2)由(1)知a,c的一个方程,再利用△AQF的外接圆得出另一个方程,解这两个方程组成的方程组即可求得所求椭圆方程; (3)由(Ⅱ)知直线l:y=k(x-1),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得满足题意的点P且m的取值范围. 【解析】 (1)设Q(x,0),由F2(c,0),A(0,b) 知 ∵,∴, 由于即F1为F2Q中点. 故∴b2=3c2=a2-c2, 故椭圆的离心率,(3分) (2)由(1)知,得于是F2(a,0)Q, △AQF的外接圆圆心为(-a,0),半径r=|FQ|=a 所以,解得a=2,∴c=1,b=, 所求椭圆方程为,(6分) (3)由(Ⅱ)知F2(1,0)l:y=k(x-1) 代入得(3+4k2)x2-8k2x+4k2-12=0 设M(x1,y1),N(x2,y2) 则,y1+y2=k(x1+x2-2),(8分) =(x1+x2-2m,y1+y2) 由于菱形对角线垂直,则 故k(y1+y2)+x1+x2-2m=0 则k2(x1+x2-2)+x1+x2-2m=0k2(10分) 由已知条件知k≠0且k∈R∴∴ 故存在满足题意的点P且m的取值范围是.(12分)
复制答案
考点分析:
相关试题推荐
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑色球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
查看答案
如图,四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD为梯形,AB∥DC,AB⊥BC.PA=AB=BC,点E在棱PB上,且PE=2EB.
(Ⅰ)求证:平面PAB⊥平面PCB;
(Ⅱ)求证:PD∥平面EAC;
(Ⅲ)求二面角A-EC-P的大小.

manfen5.com 满分网 查看答案
已知圆O的方程为x2+y2=16.
(1)求过点M(-4,8)的圆O的切线方程;
(2)过点N(3,0)作直线与圆O交于A、B两点,求△OAB的最大面积以及此时直线AB的斜率.
查看答案
已知manfen5.com 满分网的展开式中前三项的系数成等差数列.
(Ⅰ)求n的值;
(Ⅱ)求展开式中系数最大的项.
查看答案
已知向量|manfen5.com 满分网|=(cosθ,sinθ)和|manfen5.com 满分网|=(manfen5.com 满分网-sinθ,cosθ),θ∈[manfen5.com 满分网].
(1)求|manfen5.com 满分网|的最大值;
(2)若|manfen5.com 满分网|=manfen5.com 满分网,求sin2θ的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.