已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑色球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
考点分析:
相关试题推荐
如图,四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD为梯形,AB∥DC,AB⊥BC.PA=AB=BC,点E在棱PB上,且PE=2EB.
(Ⅰ)求证:平面PAB⊥平面PCB;
(Ⅱ)求证:PD∥平面EAC;
(Ⅲ)求二面角A-EC-P的大小.
查看答案
已知圆O的方程为x
2+y
2=16.
(1)求过点M(-4,8)的圆O的切线方程;
(2)过点N(3,0)作直线与圆O交于A、B两点,求△OAB的最大面积以及此时直线AB的斜率.
查看答案
已知

的展开式中前三项的系数成等差数列.
(Ⅰ)求n的值;
(Ⅱ)求展开式中系数最大的项.
查看答案
已知向量|

|=(cosθ,sinθ)和|

|=(

-sinθ,cosθ),θ∈[

].
(1)求|

|的最大值;
(2)若|

|=

,求sin2θ的值.
查看答案
已知一个四面体有五条棱长都等于2,则该四面体的体积最大值为
.
查看答案