根据,我们易求出=,而,故可将比较与的大小,转化为比较2n与n2的大小.利用数学归纳法易证明结论.
【解析】
,
而,
∴与的大小等价于2n与n2的大小.
当n=1时,21>12;当n=2时,22=22;
当n=3时,23<32;当n=4时,24=42;
当n=5时,25>52.
猜想当n≥5时,2n>n2.
以下用数学归纳法证明:
①当n=5时,由上可知不等式成立;
②假设n=k(k≥5)时,不等式成立,即2k>k2,则
当n=k+1时,2k+1=2•2k>2k2,
又∵2k2-(k+1)2=(k-1)2-2>0(∵k≥5),即2k+1>(k+1)2,
∴n=k+1时,不等式成立.
综合①②对n≥5,n∈N*不等式2n>n2成立.
∴当n=1或n≥5时,;
当n=3时,;
当n=2或4时,.