某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
版本 | 人教A版 | 人教B版 | 苏教版 | 北师大版 |
人数 | 20 | 15 | 5 | 10 |
(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为ξ,求随机变量ξ的变分布列和数学期望.
考点分析:
相关试题推荐
某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.
(1)试求选出的3种商品中至少有一种是日用商品的概率;
(2)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为m的奖金.假设顾客每次抽奖时获奖与否的概率都是

,请问:商场应将每次中奖奖金数额m最高定为多少元,才能使促销方案对商场有利?
查看答案
如图所示,在矩形ABCD中,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′-EC-B是直二面角.
(1)证明:BE⊥C D′;
(2)求二面角D′-BC-E的正切值.
查看答案

已知PA⊥平面ABCD,PA=AB=AD=2,AC与BD交于E点,BD=2,BC=CD.
(1)取PD中点F,求证:PB∥平面AFC.
(2)求二面角A-PB-E的余弦值.
查看答案
设a>0,函数f(x)=x
3-ax在[1,+∞)上是单调函数.
(1)求实数a的取值范围;
(2)设x
≥1,f(x
)≥1,且f(f(x
))=x
,求证:f(x
)=x
.
查看答案
椭圆E经过点A(2,3),对称轴为坐标轴,焦点F
1,F
2在x轴上,离心率e=

.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求∠F
1AF
2的角平分线所在直线的方程.
查看答案