满分5 > 高中数学试题 >

如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD...

如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.
(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1
(2)证明:平面D1AC⊥平面BB1C1C.

manfen5.com 满分网
(1)取A1B1的中点为F1,连接FF1,C1F1,要证明直线EE1∥平面FCC1,只需证明EE1∥F1C,就证明了EE1∥平面FCC1内的直线,即可推得结论; (2)要证明平面D1AC⊥平面BB1C1C,只需证明AC⊥BC,AC⊥CC1,即可. 证明:(1)方法一:取A1B1的中点为F1,连接FF1,C1F1, 由于FF1∥BB1∥CC1,所以F1∈平面FCC1,因此平面FCC1即为平面C1CFF1. 连接A1D,F1C,由于A1F1D1C1CD,所以四边形A1DCF1为平行四边形,因此A1D∥F1C. 又EE1∥A1D,得EE1∥F1C,而EE1⊄平面FCC1,F1C⊂平面FCC1,故EE1∥平面FCC1. 方法二:因为F为AB的中点,CD=2,AB=4,AB∥CD,所以CD綊AF,因此四边形AFCD为平行四边形,所以AD∥FC.又CC1∥DD1,FC∩CC1=C,FC⊂平面FCC1,CC1⊂平面FCC1,所以平面ADD1A1∥平面FCC1,又EE1⊂平面ADD1A1,所以EE1∥平面FCC1. (2)连接AC,取F为AB的中点,在△FBC中,FC=BC=FB=2, 又F为AB的中点,所以AF=FC=FB=2,因此∠ACB=90°,即AC⊥BC.又AC⊥CC1,且CC1∩BC=C,所以AC⊥平面BB1C1C,而AC⊂平面D1AC,故平面D1AC⊥平面BB1C1C.
复制答案
考点分析:
相关试题推荐
已知a、b为两条不同的直线,α、β为两个不同的平面,且a⊥α,b⊥β,则下列命题中假命题的有    
①若a∥b,则α∥β;②若α⊥β,则a⊥b;③若a、b相交,则α、β相交;④若α、β相交,则a,b相交. 查看答案
如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则t的取值范围是   
manfen5.com 满分网 查看答案
已知α、β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的    条件. 查看答案
已知直线l⊥平面α,直线m⊂平面β,下面有三个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β.则真命题的个数为     查看答案
设b、c表示两条直线,α,β表示两个平面,则下列命题是真命题的是   
①若b⊂α,c∥α,则b∥c ②若b⊂α,b∥c,则c∥α
③若c∥α,α⊥β,则c⊥β  ④若c∥α,c⊥β,则α⊥β 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.