满分5 > 高中数学试题 >

某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车...

某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可; (Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论. 【解析】 (Ⅰ)当每辆车的月租金定为3600元时, 未租出的车辆数为, 所以这时租出了88辆车. (Ⅱ)设每辆车的月租金定为x元, 则租赁公司的月收益为, 整理得. 所以,当x=4050时,f(x)最大,最大值为f(4050)=307050, 即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.
复制答案
考点分析:
相关试题推荐
如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).
(1)求四棱锥P-ABCD的体积;
(2)证明:BD∥平面PEC;
(3)若G为BC上的动点,求证:AE⊥PG.
manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,AB=2BC,P,Q分别为线段AB,CD的中点,EP⊥平面ABCD.
(1) 求证:AQ∥平面CEP;
(2) 求证:平面AEQ⊥平面DEP.

manfen5.com 满分网 查看答案
长方体ABCD-A1B1C1D1的侧棱AA1的长是a,底面ABCD的边长AB=2a,BC=a,E为C1D1的中点.求证:DE⊥平面BCE.

manfen5.com 满分网 查看答案
已知集合A={x|x>1},集合B={x|m≤x≤m+3};
(1)当m=-1时,求A∩B,A∪B;
(2)若B⊆A,求m的取值范围.
查看答案
有半径为r的半圆形铁皮卷成一个圆锥,那么这个圆锥的高为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.