满分5 > 高中数学试题 >

数列{an}中,a1=2,an+1=an+cn(c是常数,n=1,2,3,…),...

数列{an}中,a1=2,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.
(1)求c的值;
(2)求{an}的通项公式.
(1)由题意知(2+c)2=2(2+3c),解得c=0或c=2.再由当c=0时,a1=a2=a3,不符合题意舍去,知c=2. (2)由题意知an-an-1=(n-1)c,所以.由此可知an=n2-n+2(n=1,2,) 【解析】 (1)a1=2,a2=2+c,a3=2+3c, 因为a1,a2,a3成等比数列, 所以(2+c)2=2(2+3c), 解得c=0或c=2. 当c=0时,a1=a2=a3,不符合题意舍去,故c=2. (2)当n≥2时,由于a2-a1=c,a3-a2=2c,an-an-1=(n-1)c, 所以. 又a1=2,c=2,故an=2+n(n-1)=n2-n+2(n=2,3,). 当n=1时,上式也成立, 所以an=n2-n+2(n=1,2,)
复制答案
考点分析:
相关试题推荐
已知数列{an}是首项、公比都为q(q>0且q≠1)的等比数列,bn=anlog4an(n∈N*).
(1)当q=5时,求数列{bn}的前n项和Sn
(2)当q=manfen5.com 满分网时,若bn<bn+1,求n最小值.
查看答案
已知公差大于零的等差数列an的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列an的通项公式an
(2)若数列bn是等差数列,且manfen5.com 满分网,求非零常数c;
(3)若(2)中的bn的前n项和为Tn,求证:manfen5.com 满分网
查看答案
已知数列{an}满足manfen5.com 满分网manfen5.com 满分网
(1)求a2,a3,a4
(2)是否存在实数t,使得数列manfen5.com 满分网是公差为-1的等差数列,若存在求出t的值,否则,请说明理由;
(3)记manfen5.com 满分网数列{bn}的前n项和为Sn,求证:manfen5.com 满分网
查看答案
已知公比q为正数的等比数列an的前n项和为Sn,且5s2=4s4
(Ⅰ)求q的值.
(Ⅱ)若bn=q+sn-1,(n≥2,n∈N*)且数列bn也为等比数列,求数列(2n-1)bn的前n项和Tn
查看答案
已知数列{an}中,a1=0,an+1=manfen5.com 满分网,(n∈N*).
(Ⅰ)求证:数列{manfen5.com 满分网}为等差数列;
(Ⅱ)设数列{an}的前n项和为Sn,证明Sn<n-ln(n+1);
(Ⅲ)设bn=anmanfen5.com 满分网n,证明:对任意的正整数n、m均有|bn-bm|<manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.