满分5 > 高中数学试题 >

已知函数(a,b∈R) (1)若y=f(x)图象上的点处的切线斜率为-4,求y=...

已知函数manfen5.com 满分网(a,b∈R)
(1)若y=f(x)图象上的点manfen5.com 满分网处的切线斜率为-4,求y=f(x)的极大值;
(2)若y=f(x)在区间[-1,2]上是单调减函数,求a+b的最小值.
(1)根据导数的几何意义求出函数f(x)在x=1处的导数,以及切点在图象上建立方程组,解之即可求出a和b求出解析式,先求出f′(x)=0的值,再讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值即可; (2)将条件“若y=f(x)在区间[-1,2]上是单调减函数”转化成f'(x)=x2+2ax-b≤0在区间[-1,2]上恒成立,根据二次函数图象建立约束条件,利用线性规划的方法求出a+b的最小值即可. 【解析】 (1)∵f'(x)=x2+2ax-b, ∴由题意可知:f'(1)=-4且, 解得(3分) ∴ f'(x)=x2-2x-3=(x+1)(x-3) 令f'(x)=0,得x1=-1,x2=3 由此可知: ∴当x=-1时,f(x)取极大值.(6分) (2)∵y=f(x)在区间[-1,2]上是单调减函数, ∴f'(x)=x2+2ax-b≤0在区间[-1,2]上恒成立. 根据二次函数图象可知f'(-1)≤0且f'(2)≤0, 即: 也即(9分) 作出不等式组表示的平面区域如图: 当直线z=a+b经过交点时,z=a+b取得最小值, ∴z=a+b取得最小值为(12分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网(n∈N×),比较anmanfen5.com 满分网manfen5.com 满分网的大小,并证明你的结论.
查看答案
设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m<n).
(1)若m=-1,n=2,求不等式F(x)>0的解集;
(2)若a>0且manfen5.com 满分网,比较f(x)与m的大小.
查看答案
已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
查看答案
2008年5月12日四川汶川发生强烈地震后,我市立即抽调骨干医生组成医疗队赶赴灾区进行抗震救灾,某医院要从包括张医生在内的4名外科骨干医生中,随机抽调2名医生参加抗震救灾医疗队,那么抽调到张医生的概率为    查看答案
设x、y均为正实数,且manfen5.com 满分网,则xy的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.