满分5 > 高中数学试题 >

定义在R上的函数f(x)满足,则f(2009)的值为( ) A.-1 B.0 C...

定义在R上的函数f(x)满足manfen5.com 满分网,则f(2009)的值为( )
A.-1
B.0
C.1
D.2
本题考查的知识点是分段函数的性质及对数的运算性质,要求f(2009)的值,则函数的函数值必然呈周期性变化,由函数的解析式,我们列出函数的前若干项的值,然后归纳出函数的周期,即可求出f(2009)的值. 【解析】 由已知得f(-1)=log22=1,f(0)=0, f(1)=f(0)-f(-1)=-1, f(2)=f(1)-f(0)=-1, f(3)=f(2)-f(1)=-1-(-1)=0, f(4)=f(3)-f(2)=0-(-1)=1, f(5)=f(4)-f(3)=1, f(6)=f(5)-f(4)=0, 所以函数f(x)的值以6为周期重复性出现.,所以f(2009)=f(5)=1,故选C. 故选C.
复制答案
考点分析:
相关试题推荐
设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于( )
A.13
B.35
C.49
D.63
查看答案
若A是△ABC的一个内角,且manfen5.com 满分网,△ABC的形状是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定
查看答案
已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )
A.f(-25)<f(11)<f(80)
B.f(80)<f(11)<f(-25)
C.f(11)<f(80)<f(-25)
D.f(-25)<f(80)<f(11)
查看答案
已知函数f(x)=manfen5.com 满分网x3+ax2+bx,且f′(-1)=0.
(1)试用含a的代数式表示b;
(2)求f(x)的单调区间;
(3)令a=-1,设函数f(x)在x1、x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)).证明:线段MN与曲线f(x)存在异于M,N的公共点.
查看答案
已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)试证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4成立;
(Ⅲ)若过点P(m,n),(m、n∈R,且|m|<2)可作曲线y=f(x)的三条切线,试求点P对应平面区域的面积.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.