满分5 > 高中数学试题 >

已知函数,数列{an}满足:a1=a,an+1=f(an),n∈N*. (1)若...

已知函数manfen5.com 满分网,数列{an}满足:a1=a,an+1=f(an),n∈N*
(1)若对于n∈N*,均有an+1=an成立,求实数a的值;
(2)若对于n∈N*,均有an+1>an成立,求实数a的取值范围;
(3)请你构造一个无穷数列{bn},使其满足下列两个条件,并加以证明:①bn<bn+1,n∈N*;②当a为{bn}中的任意一项时,{an}中必有某一项的值为1.
(1)由an+1=an,我们不难根据a1=a,an+1=f(an),得到一个关于a的方程,解方程可得a的值. (2)由an+1>an,我们不难根据a1=a,an+1=f(an),得到一个关于a的不等式,解不等式可得a的值,再代入已知条件进行验证,可得结果. (3)我们可以根据已知条件中数列的形式,构造出满足条件的无穷数列,然后再结合数列的通项公式进行证明. 【解析】 (1)由题意得an+1=an=a,∴,得a=2或a=3,符合题意 (2)设an+1>an,即,解得an<0或2<an<3 ∴要使a2>a1成立,则a1<0或2<a1<3 ①当a1<0时, , 而, 即a3<a2,不满足题意. ②当2<a1<3时, , an∈(2,3), 此时,, ∴an+1>an,满足题意. 综上,a∈(2,3) (3)构造数列{bn}:, 下面证明满足要求. 此时,不妨设a取bn, 那么, 由, 可得 因为, 所以bn<bn+1 又bn<2≠5,所以数列{bn}是无穷数列, 因此构造的数列{bn}符合题意.
复制答案
考点分析:
相关试题推荐
设点manfen5.com 满分网,动圆P经过点F且和直线manfen5.com 满分网相切.记动圆的圆心P的轨迹为曲线W.
(Ⅰ)求曲线W的方程;
(Ⅱ)过点F作互相垂直的直线l1,l2,分别交曲线W于A,B和C,D.求四边形ACBD面积的最小值.
查看答案
已知函数f(x)=x|x-2|.
(Ⅰ)写出f(x)的单调区间;
(Ⅱ)解不等式f(x)<3;
(Ⅲ)设0<a≤2,求f(x)在[0,a]上的最大值.
查看答案
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.
(Ⅰ)求证:AC1∥平面CDB1
(Ⅱ)求点B到平面CDB1的距离;
(Ⅲ)求二面角B-B1C-D的大小.
查看答案
甲、乙两人进行投篮训练,已知甲投球命中的概率是manfen5.com 满分网,乙投球命中的概率是manfen5.com 满分网.假设两人投球命中与否相互之间没有影响.
(Ⅰ)如果两人各投球1次,求恰有1人投球命中的概率;
(Ⅱ)如果两人各投球2次,求这4次投球中至少有1次命中的概率.
查看答案
已知函数f(x)=asinxcosx-2cos2x+1的图象经过点manfen5.com 满分网
(Ⅰ)求实数a的值;
(Ⅱ)若x∈[0,π),且f(x)=1,求x的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.