满分5 > 高中数学试题 >

已知函数f(x)=ax+-a(a∈R,a≠0)在x=3处的切线方程为(2a-1)...

已知函数f(x)=ax+manfen5.com 满分网-a(a∈R,a≠0)在x=3处的切线方程为(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求证:曲线g(x)上的任意一点处的切线与直线x=0和直线y=ax围成的三角形面积为定值;
(2)若f(3)=3,是否存在实数m,k,使得f(x)+f(m-x)=k对于定义域内的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三个解,求实数t的取值范围.
(1)先求导数:f′(x)=a-利用导数的几何意义求出切线方程,令x=0 得y=; 再令y=ax得 x=2x,从而证得三角形面积为定值; (2)对于存在性问题,可先假设存在,即假设存在m,k满足题意,再利用 对定义域内任意x都成立,求出m,k,若出现矛盾,则说明假设不成立,即不存在;否则存在. (3)由题意知,x-1+=t(x2-2x+3)|x|,分离出t:t=,画出此函数的图象,由图可知t的取值范围. 证明:(1)因为 f′(x)=a- 所以 f′(3)=a-=,b=2…(2分) 又 g(x)=f(x+1)=ax+, 设g(x)图象上任意一点P(x,y)因为 g′(x)=a-, 所以切线方程为y-(ax+)=(a-)(x-x)…(4分) 令x=0 得y=; 再令y=ax得 x=2x, 故三角形面积S=|||2x|=4, 即三角形面积为定值.…(6分) 【解析】 (2)由f(3)=3得a=1,f(x)=x+-1假设存在m,k满足题意, 则有x-1++m-x-1+=k 化简,得 对定义域内任意x都成立,…(8分) 故只有解得 所以存在实数m=2,k=0使得f(x)+f(m-k)=k对定义域内的任意都成立.…(11分) (3)由题意知,x-1+=t(x2-2x+3)|x| 因为x≠0,且x≠1 化简,得 t=…(13分) 即=|x|(x-1)…(15分) 如图可知,-<<0 所以t<-4即为t的取值范围.…(16分)
复制答案
考点分析:
相关试题推荐
设定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上的任意一点,O为坐标原点,设向
manfen5.com 满分网=(x1,f(x1)),manfen5.com 满分网manfen5.com 满分网=(x,y),当实数λ满足x=λ x1+(1-λ) x2时,记向量manfen5.com 满分网manfen5.com 满分网+(1-λ)manfen5.com 满分网.定义“函数y=f(x)在区间[x1,x2]上可在标准k下线性近似”是指“manfen5.com 满分网k恒成立”,其中k是一个确定的正数.
(1)设函数 f(x)=x2在区间[0,1]上可在标准k下线性近似,求k的取值范围;
(2)求证:函数g(x)=lnx在区间[em,em+1](m∈R)上可在标准k=manfen5.com 满分网下线性近似.
(参考数据:e=2.718,ln(e-1)=0.541)
查看答案
如图,直角三角形ABC中,∠B=90°,AB=1,BC=manfen5.com 满分网.点M,N分别在边AB和AC 上(M点和B点不重合),将△AMN沿MN翻折,△AMN变为△A′MN,使顶点A′落在边BC上(A′点和B点不重合).设∠AMN=θ.
(1)用θ表示∠BA′M和线段AM的长度,并写出θ的取值范围;
(2)求线段AN长度的最小值.

manfen5.com 满分网 查看答案
manfen5.com 满分网(附加题-必做题)
四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(I)证明PA∥平面BDE;
(Ⅱ)求二面角B-DE-C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?若存在,请求出F点的位置;若不存在,请说明理由.
查看答案
在数列{an}中,已知manfen5.com 满分网
(I)求数列{an}的通项公式;
(II)令manfen5.com 满分网,若Sn<k恒成立,求k的取值范围.
查看答案
已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC-sin(B-C)的值;(2)若a=2,求△ABC周长的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.