满分5 > 高中数学试题 >

选修4-5:不等式选讲. 设函数f(x)=2|x-1|+|x+2|. (Ⅰ)求不...

选修4-5:不等式选讲.
设函数f(x)=2|x-1|+|x+2|.
(Ⅰ)求不等式f(x)≥4的解集;
(Ⅱ)若不等式f(x)<|m-2|的解集是非空的集合,求实数m的取值范围.
(Ⅰ)化简f(x)的解析式,结合单调性求出不等式 f(x)≥4的解集. (Ⅱ) 利用f(x)的单调性求出 f(x)≥3,由于不等式f(x)<|m-2|的解集是非空的集合,得|m-2|>3,解绝对值不等式求出实数m的取值范围. 【解析】 (Ⅰ)f(x)=,令-x+4=4 或 3x=4, 得x=0,x=,所以,不等式 f(x)≥4的解集是{x|x≤0,或x≥}. (Ⅱ)f(x)在(-∞,1]上递减,[1,+∞)上递增,所以,f(x)≥f(1)=3, 由于不等式f(x)<|m-2|的解集是非空的集合,所以,|m-2|>3, 解之,m<-1或m>5,即实数m的取值范围是:(-∞,-1)∪(5,+∞).
复制答案
考点分析:
相关试题推荐
选修4-4:坐标系与参数方程.
已知⊙C的参数方程为manfen5.com 满分网,(θ为参数),p是⊙C与y轴正半轴的交点,以圆心C为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求⊙C的普通方程.
(Ⅱ)求过点P的⊙C的切线的极坐标方程.
查看答案
manfen5.com 满分网如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.
(1)求证:AG•EF=CE•GD;
(2)求证:manfen5.com 满分网
查看答案
已知函数manfen5.com 满分网R),g(x)=lnx.
(1)求函数F(x)=f(x)+g(x)的单调区间;
(2)若关于x的方程manfen5.com 满分网(e为自然对数的底数)只有一个实数根,求a的值.
查看答案
已知可行域manfen5.com 满分网的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率manfen5.com 满分网
(1)求圆C及椭圆C1的方程;
(2)设椭圆C1的右焦点为F,点P为圆C上异于A1、A2的动点,过原点O作直线PF的垂线交直线manfen5.com 满分网于点Q,判断直线PQ与圆C的位置关系,并给出证明.
查看答案
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点
(1)证明:PE⊥BC
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.